National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Vacuolar proteins in development of yeast colonies
Trubitsyna, Yana ; Palková, Zdena (advisor) ; Heidingsfeld, Olga (referee)
The laboratory strains of yeast Saccharomyces Cerevisiae form colonies which can differentiate into two main cell subpopulations. U and L cells demonstrate different morphology, metabolism and stress-resistance. It was also proved that some of metabolic pathways in U cells are a similar to ones in tumor cells. The unique metabolism is activated in U cells; the TORC1 is active in these cells together with autophagy and glycogen accumulation, which are characteristic for cells with inactivated TORC1. CORVET and HOPS complexes together with vacuolar ATPase are involved in processes related to vacuolar fusion and trafficking. Also, these complexes contribute to the regulation of TORC1 activity. Vam6p is a subunit of HOPS complex and it is also involved in regulation of TORC1 acting as GEF for Gtr1p GTPase, which activates TORC1. The aim of this study was to outline whether selected subunits of mentioned complexes affect TORC1 activity in U cells. Further aim was to confirm the effect of Vam6p on selected proteins production. These proteins were chosen based on results of proteomic analysis performed in our laboratory. In order to investigate possible effects of proteins of interest absence on colonies' morphology, strains deleted in selected genes were prepared (VPS3, VPS8, VPS33, VPS41, VPH2, VAC7 a...
The role of the Smc5/6 complex in DNA viral infection
Protivová, Eliška ; Huerfano Meneses, Sandra (advisor) ; Pokorná, Karolína (referee)
The Smc5/6 complex is an eukaryotic protein complex that, together with Smc1/3 cohesin and Smc2/4 condensin, is involved in ensuring genome stability. It contributes to this by participating in the organization and maintenance of chromosomal structures as well as in the response to DNA damage. In addition, the Smc5/6 complex has been shown to play an important role in viral infection. This thesis focuses on the mechanisms of interaction of the Smc5/6 complex with viral DNA genomes, DNA intermediate genomes and viral proteins. In the case of HBV of the Hepadnaviridae family, Smc5/6 acts as a restriction factor. The same is true for HSV-1 of the Herpesviridae family, viruses of the Papillomaviridae family and HIV-1 of the Retroviridae family. An interaction of the Smc5/6 complex with the JC virus of the Polyomaviridae family has also been discovered. Nevertheless, the meaning of this interaction remains elusive. Some of the above-mentioned viruses can prevent this restriction. In detail, HBx protein of HBV mediates proteasomal degradation of the Smc5/6 complex or Vpr protein of HIV-1 induces degradation of the SLF2 protein, which is responsible for the Smc5/6 localization on HIV-1 DNA intermediate genomes. Keywords: Smc5/6 complex, DNA repair, ATPase, sumoylation, DNA viruses, viruses with a DNA...
Vacuolar proteins in development of yeast colonies
Trubitsyna, Yana ; Palková, Zdena (advisor) ; Heidingsfeld, Olga (referee)
The laboratory strains of yeast Saccharomyces Cerevisiae form colonies which can differentiate into two main cell subpopulations. U and L cells demonstrate different morphology, metabolism and stress-resistance. It was also proved that some of metabolic pathways in U cells are a similar to ones in tumor cells. The unique metabolism is activated in U cells; the TORC1 is active in these cells together with autophagy and glycogen accumulation, which are characteristic for cells with inactivated TORC1. CORVET and HOPS complexes together with vacuolar ATPase are involved in processes related to vacuolar fusion and trafficking. Also, these complexes contribute to the regulation of TORC1 activity. Vam6p is a subunit of HOPS complex and it is also involved in regulation of TORC1 acting as GEF for Gtr1p GTPase, which activates TORC1. The aim of this study was to outline whether selected subunits of mentioned complexes affect TORC1 activity in U cells. Further aim was to confirm the effect of Vam6p on selected proteins production. These proteins were chosen based on results of proteomic analysis performed in our laboratory. In order to investigate possible effects of proteins of interest absence on colonies' morphology, strains deleted in selected genes were prepared (VPS3, VPS8, VPS33, VPS41, VPH2, VAC7 a...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.